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SUMMARY

Composite schemes are formed by global composition of several Lax–Wendroff steps followed by a
diffusive Lax–Friedrichs or WENO step, which filters out the oscillations around shocks typical for the
Lax–Wendroff scheme. These schemes are applied to the shallow water equations in two dimensions. The
Lax–Friedrichs composite is also formulated for a trapezoidal mesh, which is necessary in several
example problems. The suitability of the composite schemes for the shallow water equations is
demonstrated on several examples, including the circular dam break problem, the shock focusing problem
and supercritical channel flow problems. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shallow water equations are a system of conservation laws. There are two simple
well-known finite difference schemes for conservation laws, Lax–Wendroff (LW) and Lax–
Friedrichs (LF). Both of these methods have some drawbacks. The LW scheme is second-or-
der-accurate but oscillatory close to shocks. The LF scheme is non-oscillatory but also
excessively diffusive. Composite schemes combine these two methods in an attempt to remove
their deficiencies. One example of a composite scheme is a global composition of several LW
steps followed by one diffusive LF step that serves as a consistent filter removing the unwanted
oscillations. This simple construction is efficient and produces surprisingly good results. For
more details see [1]. Another composite uses a component-wise formulation of WENO for the
diffusive step. Here, the authors apply these composite schemes to the shallow water equations
in two dimensions.
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The two-dimensional shallow water equations have attracted quite a lot of attention in
recent years. Alcrudo and Garcia-Navarro [2] developed a high-resolution Godunov-type
MUSCL finite volume scheme. Glaister [3] used a flux splitting technique. Nadiga [4] designed
an adaptive discrete velocity model of the shallow water equations. Nadiga et al. [5] employed
a semi-Lagrangian scheme on a massively parallel computer. Zienkiewicz and Ortiz [6]
introduced a split characteristic finite element method. Ambrosi [7] used Roe’s Riemann solver
with MUSCL slope limiting. Bova and Carey [8] developed a streamline upwind Petrov–
Galerkin scheme. Morel et al. [9] decomposed the shallow water equations into many
advection equations, which are then solved by a finite volume scheme with a special limiter.
Lyra and Morgan [10] used Galerkin–LED and MUSCL schemes on an adaptive unstructured
mesh. More recently, in 1997, Walters and Barragy [11] compared H and P finite element
methods. Anastasiou and Chan [12] used a Godunov-type second-order upwind finite volume
method on unstructured triangular meshes. Chippada et al. [13] developed a Godunov-type
finite volume method using Roe’s approximation for solving the Riemann problems. Appar-
ently, there are many numerical methods for solving the shallow water equations. This paper
applies composite schemes to solve this problem and show that they work remarkably well.

The paper is organized as follows. Section 2 illustrates how composite schemes work for the
shallow water equations in one dimension. Section 3 presents the shallow water equations in
two dimensions and the boundary conditions used. Section 4 covers the finite difference
schemes on uniform rectangular meshes. In Section 5, the finite difference schemes are newly
developed on trapezoidal meshes, which are needed for channel flow problems. Section 6
includes several numerical test problems demonstrating the usefulness of the composite
schemes for the shallow water equations.

2. ONE-DIMENSIONAL ILLUSTRATION

The shallow water equations [14] in one dimension are

ht+ (hu)x=0,

(hu)t+
�

hu2+g
1
2

h2�
x

+ghz0x=0.

Here h(x, t) is the thickness of the water layer, u(x, t) is the velocity of the layer, z0(x) is the
height of the bottom profile and g is the gravitational constant. The authors use here the
bottom profile

z0(x)=Í
Ã

Ã

Á

Ä

bc

�
1−

x2

4
�

0

for −25x52

otherwise.

The initial conditions h(x, 0)+z0(x)=1, u(x, 0)=u0 set the height of the water surface and
the initial velocity to be constant. Free boundary conditions are applied.

For a system of conservation laws

Ut= fx(U),
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TWO-DIMENSIONAL SHALLOW WATER EQUATIONS 463

the two-step Lax–Friedrichs (LF) scheme defines new values on a staggered dual grid as

Ui+1/2
n+1/2=

1
2

[Ui
n+Ui+1

n ]+
Dt

2Dx
[ f(Ui+1

n )− f(Ui
n)], (1)

and the solution on the original grid is obtained by the same formula shifted by 1/2 in the
index i. The two-step Lax–Wendroff (LW) scheme uses the same predictor (1) for the first
half-step. In the second half-step, however, it advances from the time level n to the time level
n+1 using the fluxes from the time level n+1/2,

Ui
n+1=Ui

n+
Dt
Dx

[ f(Ui+1/2
n+1/2)− f(Ui−1/2

n+1/2)]. (2)

It is well-known that the LW scheme produces oscillations behind shocks, while LF is
excessively diffusive, smearing out the shocks. Both these phenomena are evident in Figure 1,
where the heights at t=20 of the one-dimensional shallow water flow over topography
calculated by LF and LW schemes with 250 points is presented. In this problem, the authors
used bc=0.2, u0=1, g=1 and solved it in x� (−10, 10).

The composite scheme is defined by global composition of several LW steps followed by one
LF step. The operator defined by the LW scheme (1) and (2) is denoted LW, and the operator
defined by the LF scheme (1) by LF, with both operators doing one time step from time level
n to n+1. The difference operator Sk defined by k−1 applications of LW followed by one
application of LF

Sk=LF $LW $ · · · $LW, (3)

then defines the composite scheme, which is called LWLFk. The operator Sk operates from
time level n to n+k, Un+k=SkUn. The results of the same problem done by the composite
LWLF4 scheme with 250 and 2000 points presented in Figure 2 shows that the composite
scheme eliminates the drawbacks of both LW and LF schemes. The solution is not oscillatory
and the shock heights and speeds are resolved well. The solution with 2000 points should be
a good approximation of the exact solution.

Figure 1. Heights of a one-dimensional shallow water flow calculated by LF and LW schemes.
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Figure 2. Heights of a one-dimensional shallow water flow calculated by the composite LWLF4 scheme with 250 and
2000 points.

The LW scheme is second-order, while LF is only first-order-accurate, which implies that the
composite scheme is also only first-order, however, with a smaller coefficient of the leading
error term.

For more details of composite schemes, examples with two-dimensional gas dynamics
Riemann problems and tests with a second-order diffusive WENO scheme instead of LF, see
Reference [1].

3. TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

The shallow water system in two dimensions is described by the fluid layer thickness h(t, x, y),
x and y components of layer velocity u(t, x, y), 6(t, x, y). The shallow water equations are
derived from the three-dimensional Euler equations by vertical averaging using the hydrostatic
pressure assumption. For the numerical solution, the authors use the conservative form of the
shallow water equations for the conserved momenta hu and h6 in the form

ht+ (hu)x+ (h6)y=0,

(hu)t+
�

hu2+
1
2

gh2�
x

+ (hu6)y=0,

(h6)t+ (hu6)x+
�

h62+
1
2

gh2�
y

=0,

(4)

where g is the gravitation constant. The x and y flux Jacobian matrices of the system are

A=Ã
Á

Ä

0
gh−u2

−u6

1
2u
6

0
0
u
Ã
Â

Å
, B=Ã

Á

Ä

0
−u6

gh−62

0
6

0

1
u
26
Ã
Â

Å
,

with eigenvalues {u, u9
gh} and {6, 69
gh} respectively.
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At the inflow boundary, the authors use fixed boundary conditions fixing the values of h, u,
6 on the boundary to a given value. At the free boundaries, they use free boundary conditions,
setting hn=0, un=0, 6n=0, where the subscript n denotes the derivative normal to the
boundary. At the wall boundaries, they use free-slip boundary conditions, setting hn=0 and
the velocity component normal to the boundary is set to zero.

4. FINITE DIFFERENCE SCHEMES ON UNIFORM RECTANGULAR MESH

A uniform rectangular mesh is given by the points (xi, yj) with constant grid steps Dx=xi+1−
xi, Dy=yj+1−yj. The dual mesh is given by the points (xi+1/2, yj+1/2)= (xi+Dx/2, yj+Dy/
2). The basic idea of the new version of two-dimensional LF, which is derived in [1], is based
on the observation of Boukadida and LeRoux [15], that in order to implement a two-dimen-
sional Godunov method to get cell averages on the dual grid from the averages on the primary
grid, one needs only solve one-dimensional Riemann problems on the edges of the dual grid.
The first half-step of the new LF is, for the system of conservation laws in two dimensions

Ut= fx(U)+gy(U), (5)

given by

Ui+1/2, j+1/2
n+1/2 =

1
4

[Ui, j
n +Ui+1, j

n +Ui, j+1
n +Ui+1, j+1

n ]+
Dt

2Dx
[Fi+1, j+1/2−Fi, j+1/2]

+
Dt

2Dy
[Gi+1/2, j+1−Gi+1/2, j ], (6)

where the fluxes F, G are evaluated at the LF approximate solution of the one-dimensional
Riemann problems at time level n+1/4, giving

Fi+1, j+1/2= f
�1

2
[Ui+1, j+1

n +Ui+1, j
n ]+

Dt
4Dy

[g(Ui+1, j+1
n )−g(Ui+1, j

n )]
�

, (7)

and

Gi+1/2, j+1=g
�1

2
[Ui+1, j+1

n +Ui, j+1
n ]+

Dt
4Dx

[ f(Ui+1, j+1
n )− f(Ui, j+1

n )]
�

. (8)

The second half-step of the LF scheme going from the dual to the primary mesh is given by
the same formulae shifted by 1/2 in the indices i and j.

The corresponding second-order-accurate predictor–corrector scheme, which is called the
corrected Lax–Friedrichs (CF), is then

Ui, j
n+1=Ui, j

n +
Dt

2Dx
[ f(Ui+1/2, j+1/2

n+1/2 )+ f(Ui+1/2, j−1/2
n+1/2 )− f(Ui−1/2, j+1/2

n+1/2 )− f(Ui−1/2, j−1/2
n+1/2 )]

+
Dt

2Dy
[g(Ui+1/2, j+1/2

n+1/2 )+g(Ui−1/2, j+1/2
n+1/2 )−g(Ui+1/2, j−1/2

n+1/2 )−g(Ui−1/2, j−1/2
n+1/2 )],

where the predictor half-step is defined by the LF half-step (6). One could think about
averaging Un+ l/2 before applying f or g. The authors have tried this idea; however, it does not
work well for the shock focusing example from Section 6.2.

The composite schemes are constructed in the same way as in one dimension (3) and are
denoted by CFLFk. For more details see [1], where the authors have shown that both the LF
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and CF schemes are optimally stable for the scalar advection equation (5) with f=aU, g=bU,
i.e. their stability condition is max(�aDt/Dx �, �bDt/Dy �)51, which is also the stability condition
of the composite schemes in that case. No stability analysis is available for systems, but the
computations indicate that the composite schemes for shallow water are stable with the
condition

max(�u9
gh �Dt/Dx,�69
gh �Dt/Dy)51.

The time interval Dt is adaptively determined from this stability condition after each time step.
In [1], the authors have also experimented with a second-order diffusive WENO [16] scheme

replacing the LF step in the composite schemes. They do not use the eigenvector decomposi-
tion as in [16] and apply the WENO procedure directly to the conserved variables. They call
such a scheme component-wise WENO (CW) and the composite is then CFCWk. One
numerical test of this composite is given later.

5. TRAPEZOIDAL MESH

For the supercritical channel flow problems described in Section 6.3, the shallow water
equations on a mesh with trapezoidal cells needs to be solved. Here, the LF and CF finite
difference schemes are developed on trapezoidal meshes.

Both schemes use the standard device of approximating fx+gy in a convex polygonal cell
with area A by

fx+gy
1
A
&&

( fx+gy) dx dy
1
A
7

− f dy+g dx, (9)

with the line integral taken counter-clockwise. The integrals of f and g along the edges are then
approximated by some form of midpoint or trapezoidal rule.

5.1. Mesh

The solution region is a trapezoid defined by four corners [(xa, ya), (xb, yb), (xa, yc), (xb, yd)].
The grid indices (i, j ) correspond to (x, y) co-ordinates. The grid has (ni, nj) points in (x, y)
directions. The mesh is uniform in the x co-ordinate.

Dx=
xb−xa

ni−1
, xi=xa+ (i−1)Dx.

The trapezoidal mesh is constructed so that the grid intervals in y depend only on the x index
i, i.e. the y grid step on each grid line parallel to the y co-ordinate axis is constant.

Dyi=yi, j+1−yi, j=Dy1+ (i−1)
Dyni

−Dy1

ni−1
,

where the first and last grid steps are given by

Dy1=
yc−ya

nj−1

, Dyni
=

yd−yb

nj−1
.

The y co-ordinates of the node (i, j ) are

yi, j=ya+ (i−1)
yb−ya

ni−1
+ ( j−1)Dyi.
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The y co-ordinates of the dual staggered grid are

yi+1/2, j+1/2=
1
4

(yi, j+yi+1, j+yi+1, j+1+yi, j+1).

The area of the cell (i+1/2, j+1/2), i.e. of the trapezoid with corners at nodes [(i, j ), (i+1, j ),
(i+1, j+1), (i, j+1)] is

Si=
Dyi+Dyi+1

2
Dx.

The area of the trapezoid with corners [(i, j ), (i+1/2, j ), (i+1/2, j+1/2), (i, j+1/2)] is

si=
3Dyi+Dyi+1

16
Dx

and the area of the trapezoid with corners [(i+1/2, j ), (i+1, j ), (i+1, j+1/2), (i+1/2, j+1/
2)] is

si+1/2=
Dyi+3Dyi+1

16
Dx.

5.2. LF predictor

A part of the primary grid that is used in the construction of the LF predictor scheme is
shown in Figure 3.

The LF predictor operates from the node values on the original grid at the time level n to
the dual staggered grid at the time level n+1/2, using the staggered Godunov idea of [15] and
also (9). For the present special trapezoids, the difference equations are

Figure 3. A part of the primary grid used in the LF predictor.
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Figure 4. A part of dual grid used in CF corrector.

SiUi+1/2, j+1/2
n+1/2 =siUi, j

n +si+1/2Ui+1, j
n +si+1/2Ui+1, j+1

n +siUi, j+1
n

−
Dt
2

[−Fi+1/2, j(yi+1, j−yi, j)−Fi+1, j+1/2(yi+1, j+1−yi+1, j)

+Fi+1/2, j+1(yi+1, j+1−yi, j+1)+Fi, j+1/2(yi, j+1−yi, j)]

+
DtDx

2
[Gi+1/2, j+1−Gi+1/2, j ], (10)

where the fluxes F and G are given by

Fkl= f(Ukl
n+1/4), Gkl=g(Ukl

n+1/4),

with Un+1/4 denoting the approximate solution of an appropriate one-dimensional Riemann
problem. For the horizontally oriented edges, this is a Riemann problem in a rotated
co-ordinate system, and the LF approximation is

Ui+1/2, j
n+1/4 =

1
2

(Ui, j
n +Ui+1, j

n )

+
Dt
4

( f(Ui+1, j
n )− f(Ui, j

n ))Dx+ (g(Ui+1, j
n )−g(Ui, j

n ))(yi+1, j−yi, j)
Dx2+ (yi+1, j−yi, j)2 ,

while for the vertical edges, the LF approximation is the same as for a rectangular grid, namely

Ui, j+1/2
n+1/4 =

1
2

(Ui, j+1
n +Ui, j

n )+
Dt
4

g(Ui, j+1
n )−g(Ui, j

n )
yi, j+1−yi, j

.

5.3. LF corrector

The LF corrector is the same as the LF predictor but with the grid shifted by (1/2, 1/2),
thereby interchanging the original and dual grids. For completeness, the authors also present
the formulae for the LF corrector. For the grid see Figure 4. There is a need here for the area
of the cell with center at the node (i, j )
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Si−1/2=2(si−1/2+si)

(cell is denoted by its lower left corner). The LF corrector is then

Si−1/2Ui, j
n+1=si−1/2Ui−1/2, j−1/2

n+1/2 +siUi+1/2, j−1/2
n+1/2 +siUi+1/2, j+1/2

n+1/2 +si−1/2Ui−1/2, j+1/2
n+1/2

−
Dt
2

[−Fi, j−1/2(yi+1/2, j−1/2−yi−1/2, j−1/2)−Fi+1/2, j(yi+1/2, j+1/2−yi+1/2, j−1/2)

+Fi, j+1/2(yi+1/2, j+1/2−yi−1/2, j+1/2)+Fi−1/2, j(yi−1/2, j+1/2−yi−1/2, j−1/2)]

+
DtDx

2
[Gi, j+1/2−Gi, j−1/2],

where the fluxes F and G are given by

Fkl= f(Ukl
n+3/4), Gkl=g(Ukl

n+3/4),

with

Ui, j+1/2
n+3/4 =

1
2

(Ui−1/2, j+1/2
n+1/2 +Ui+1/2, j+1/2

n+1/2 )

+
Dt
4
�( f(Ui+1/2, j+1/2

n+1/2 )− f(Ui−1/2, j+1/2
n+1/2 ))Dx

Dx2+ (yi+1/2, j+1/2−yi−1/2, j+1/2)2

+
(g(Ui+1/2, j+1/2

n+1/2 )−g(Ui−1/2, j+1/2
n+1/2 ))(yi+1/2, j+1/2−yi−1/2, j+1/2)

Dx2+ (yi+1/2, j+1/2−yi−1/2, j+1/2)2

n
,

Ui+1/2, j
n+3/4 =

1
2

(Ui+1/2, j+1/2
n+1/2 +Ui+1/2, j−1/2

n+1/2 )+
Dt
4

g(Ui+1/2, j+1/2
n+1/2 )−g(Ui+1/2, j−1/2

n+1/2 )
yi+1/2, j+1/2−yi+1/2, j−1/2

.

5.4. CF corrector

A part of the dual grid that is used in the construction of the CF corrector scheme is shown
in Figure 4.

The CF predictor is the same as the LF predictor (10). The CF corrector operates from the
node values on the dual staggered grid at the time level n+1/2 to the original grid at the time
level n+1 and is given by

Ui, j
n+1Ui, j

n +
Dt
A

&&
( fx+gy) dx dy.

Using (9), in this case the equations are

Ui, j
n+1=Ui, j

n +
Dt

2Si−1/2

[( f(Ui+1/2, j−1/2
n+1/2 )− f(Ui−1/2, j+1/2

n+1/2 ))(yi+1/2, j+1/2−yi−1/2, j−1/2)

+ ( f(Ui+1/2, j+1/2
n+1/2 )− f(Ui−1/2, j−1/2

n+1/2 ))(yi−1/2, j+1/2−yi+1/2, j−1/2)

+Dx(g(Ui+1/2, j+1/2
n+1/2 )+g(Ui−1/2, j+1/2

n+1/2 )−g(Ui+1/2, j−1/2
n+1/2 )−g(Ui−1/2, j−1/2

n+1/2 ))].

This CF scheme appears to be second-order-accurate on smooth grids, like the grids used in
Section 6.3. However, it is only first-order-accurate on the rough grids. The accuracy checking
has been done by a numerical convergence test with a smooth solution.

The composite schemes on the trapezoidal mesh are constructed from the CF and LF
schemes in the same way as in previous cases.
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6. NUMERICAL RESULTS

This section presents several test examples showing how the composite schemes work for the
two-dimensional shallow water equations.

6.1. Circular dam break problem

This problem was first solved in [2] then also in [12]. The solution area is a square (0, 50
m)× (0, 50 m). In the center of the square is a cylindrical dam with radius 11 m. The initial
water level is 10 m inside the dam and 1 m outside the dam and water is initially at rest.
Suddenly, the cylindrical wall forming the dam disappears and time evolution of water
movement is calculated. The contour plot of water height at time 0.69 s is shown in Figure 5.
For a better insight, the authors also present the surface plot in Figure 6. Calculation is done
on a grid of 50×50 cells as in [2] by the CFLF4 method. The plots show that the circular
symmetry is preserved very well. The results agree with [2,12].

6.2. Shock focusing problem

The shock focusing problem originates in [17] and has been solved also in [9]. The square
domain (−1.5, 1.5)× (−1.5, 1.5) has again in the center a circular wall of radius 0.35. The
initial height is 0.1 inside the wall and 1 outside. Initially the system is at rest. After removing
the wall, the circular shock moves inwards, passes through the singularity and then the circular
shock expands outwards. The expanding shock at time t=1 is plotted in Figure 7 as a contour

Figure 5. Contour plot of water height for the circular dam break problem.
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Figure 6. Surface plot of water height for the circular dam break problem.

Figure 7. Contour plot of height for the shock focusing problem.
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Figure 8. Axis and diagonal profile of height and velocity for the shock focusing problem by CFLF2 scheme.
One-dimensional radial symmetric solution is a good approximation of exact solution.

plot. In this calculation, the authors use dimensionless g=1. They use the mesh with 160×160
points as in [9]. Again circular symmetry is preserved very well.

For comparison, they have also computed the solution of the one-dimensional circularly
symmetric shallow water equations

Ht+Mr=0,

Mt+
�M2

H
+

1
2

g
H2

r
�

r

−
1
2

g
H2

r2 =0,

where H=hr and a conserved momentum M is given by M=Hu, by the LWLF4 method on
(0, 1.5) with 5000 points. This solution is a good approximation of the exact solution. In
Figure 8, the authors compare x and diagonal strips of the two-dimensional CFLF2 solution
with the one-dimensional radial symmetric solution. Both height (upper plot) and velocity are
plotted. Even for this hard problem, shocks are resolved quite well, x and diagonal strips are
almost same. Recall that CFLF2 is only a first-order method.

The authors have also tried the second-order CFCW2 composite scheme. The comparison of
x and diagonal strips for height and velocity with the one-dimensional radial solution is in
Figure 9. The solution is resolved a bit better in continuum areas. Symmetry is preserved again
very well. Note that in [9], two second-order methods had difficulties with velocity differences
of x and diagonal strips around the origin.

6.3. Supercritical channel flows

These supercritical (Froude number Fr=u/
gh\1) flow test cases include flows through
the channel with wall constrictions. Their solution is a steady state flow with hydraulic and
negative jumps. Wall constriction is given by the angle a.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 461–479 (1999)
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Figure 9. Axis and diagonal profile of height and velocity for the shock focusing problem by CFCW2 scheme. The
one-dimensional radially symmetric solution is a good approximation of the exact solution.

6.3.1. Oblique hydraulic jump. The first problem is with the wall constriction given by the
angle a=8.95°. The initial and inflow conditions are the height h0=1 m and velocity u0=8.57
m s−1. The geometry of the problem with the 41×31 mesh is given in Figure 10. At the

Figure 10. Geometry and mesh for the oblique hydraulic jump problem with a=8.95°.
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Figure 11. Contour plot of the oblique hydraulic jump problem with a=8.95°.

inflow, left-hand-side, the authors have used inflow, fixed boundary conditions, at the upper
and right outflow sides, they have used free boundary conditions and at the lower wall side,
slip (free height and zero normal velocity) boundary conditions. The contour plot of the steady

Figure 12. Geometry and mesh for the oblique hydraulic jump problem with a=15°.
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Figure 13. Contour plot of the oblique hydraulic jump problem with a=15°.

state solution is shown in Figure 11. For this problem, the analytical solution can be computed.
The shock angle, b=29.72° from the numerical solution agrees well with the analytical result
b=30° [2]. Also, the numerical height and velocity h2=1.5005, �u2�=7.9787, agree well with
the analytical prediction h2=1.5, �u2�=7.9556 [2].

The second problem is the wall constriction given by the angle a=15°. The initial and inflow
conditions are height h0=1 and Froude number Fr=3. The geometry of the problem with the
55×37 mesh is given in Figure 12. The boundary conditions were the same as in the previous
test. The contour plot of the steady state solution is given in Figure 13. The shock angle
b=34.14° from the numerical solution agrees well with the analytical result, b=34.36° [6].

Figure 14. Geometry and mesh for the symmetric channel constriction problem.
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Figure 15. Contour plot for the symmetric channel constriction problem.

6.3.2. Symmetric channel constriction. In this example, the channel wall is symmetrically
constricted from both sides with angle a=5°. The initial and inflow conditions are the height
h0=1 and Froude number Fr=2.5. The geometry of the problem with the 61×27 mesh is
given in Figure 14. The contour plot of the steady state solution is in Figure 15 and shows the
cross-wave pattern. For more insight, the authors also present the surface plot in Figure 16. In
this case, again, they can compare numerical results with analytical ones [6]. Numerical values

Figure 16. Surface plot for the symmetric channel constriction problem.
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Figure 17. Geometry and mesh for the symmetric channel with variable width problem.

of the heights h2=1.249, h3=1.527 of the first and second plateau agree well with analytical
results h2=1.254, h3=1.55 [6].

6.3.3. Symmetric channel with 6ariable width. In the last example (taken from [6,13]) the
channel wall is symmetrically constricted from both sides with angle a=15° and past the
constriction there follows again a straight narrower channel. The geometry of the problem
with the 73×33 mesh is given in Figure 17. The initial and inflow conditions are the height
h0=1 and Froude number Fr=2.5. The contour plot of the steady state solution is given in
Figure 18. For more insight, the authors present the surface plot in Figure 19. The results show
again a cross-wave pattern that includes not only hydraulic jumps as in previous examples, but
also negative jumps that are caused by the presence of concave corners. On the relatively rough
grid, the shocks are again resolved quite nicely with a result similar to that in [13], where they
use a grid with a similar number of nodes.

Figure 18. Contour plot for the symmetric channel with variable width problem.
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Figure 19. Surface plot for the symmetric channel with variable width problem.

7. CONCLUSION

The composite Lax–Wendroff and Lax–Friedrichs schemes have been generalized to trape-
zoidal meshes and applied to two-dimensional shallow water flows in a constricted channel.
This composite and the Lax–Wendroff WENO composite have been applied to the dam
breaking problems. The effectiveness and robustness of this approach has been shown on
several test examples. Although the authors have not done any speed comparisons with other
methods, they believe that these simple schemes result in a rather fast numerical algorithm.
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